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A macrokinetic description is presented for diffusion produced by a solid- 
phase reaction in a binary system. The kinetics of processes on the inter- 
phase boundary and diffusion with the phase volumes are considered. The 
effect of kinetic factors on the growth of intermetallic compounds is stud- 
ied numerically. 

The growth of intermetallic compounds or silicides upon diffusion mass transport ac- 
companied by solid phase reaction (so-called reaction diffusion) may be found in deposition 
of protective coatings on metals and alloys, upon use of composition materials at high tem- 
peratures, and in integrated circuit technology [i]. Reaction diffusion in solids involves 
three stages: diffusion approach of atoms to the interphase boundary and their removal 
therefrom, as well as transitions of atoms through the interphase boundary with a corre- 
sponding phase transition - readjustment of one crystalline lattice to another [2]. In the 
case where the limiting stage is the diffusion mass transport, the elemental concentrations 
on the interphase boundary correspond to equilibrium values. Such a situation is found giv- 
en a sufficient thickness of intermetallides. For such physical conditions diffusion in a 
binary system will be described by a Stefan-type problem, from the solution of which there 
follows a parabolic law of interphase boundary motion [3]. However, in some systems (Cu-AI 
[4], Fe-Cr, Fe-Mn [5]) the elemental concentrations at the boundary deviate from equilibrium 
values. The growth of a number of phases (MoSi2, WSi2, NbSi2, CrSi2, et al.) upon diffusion 
saturation [5], annealing of thin-film and massive diffusion pairs [i, et al.] occurs linear- 
ly with time. Those experimental data indicate that the kinetics of processes occurring on 
the solid phase boundary play a significant role. The studies [6, 7] considered the case in 
which growth of the intermetallide is limited by the atomic flux through the interphase bound- 
ary, while in [8] the limiting process was the phase transformation rate. 

Formulation of the Model. We will consider a case more general than that of [3, 6-8], 
where the rates of the three processes are comparable. We will also consider the fact that 
according to electron microscopy data [9] the interphase boundary has a steplike form with 
amplitude from 30 nm (CoSi2-Si) to i00 nm (NiSi2-Si). We will use the following notation: 
I) solid replacement solution based on element A; 2) the intermetallide (Fig. i). In both 
phases diffusion is accomplished by a vacancy mechanism. We make the following traditional 
assumptions: i) diffusion mass transport is describable in the one-dimensional approxima- 
tion - the fluxes J1 and J2 are directed along the axis Ox; 2) volume diffusion dominates 
over grain-boundary diffusion; 3) the number of crystalline lattice points per unit volume 
for phases 1 and 2 is identical: nl ~ = n2 ~ The second of these assumptions is valid 
for sufficiently high annealing temperature or saturation of massive specimens as well as 
for a number of cases of thin film diffusion pairs [I0]. The third assumption allows us 
to neglect change in volume with growth in one phase at the expense of the other. Since 
the thermal diffusivity coefficient of metals b ~ 10 -I cm2/sec, while in the annealing or 
saturation temperature range the diffusion coefficient D ~ 10 -8 - i0-7 cm2/sec, with the 
heating zone size &s significantly exceeds the diffusion zone width As As163 ~ /b-iD ~ 
103 . In light of this we will consider the process under isothermal conditions. 

Transition of atoms through the interphase boundary occurs as a result of exchange of 
places between atoms A and B, belonging to different phases, and jumping of atoms into a 
vacant place in the adjacent crystalline lattice [ii] (Fig. ic). This leads to a change 
in the compositions of the regions near the boundaries. The necessity of distinguishing 
between atomic transitions through the interphase boundary and a phasetransition consisting 

Belorussian Polytechnic Institute, Minsk. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 55, No. 5, pp. 822-830, November, 1988. Original article submitted July 30, 
1987. 

0022-0841/88/5505-1291512.50 �9 1989 Plenum Publishing Corporation 1291 



/l ll - i' . 
ro 

,q $ ,q,~. S B 8 
8 ~ B ~ 8  8 8 

2 R~R~:~ 8 8 / 
B R BhI~N B B 
N 8  "tBB B 
BRB[RB~ 

b 

i 

c o x 

Fig. i. Schematic diagram of diffusion 
with solid state reaction in binary sys- 
tem: a) portion of A-B state diagram; 
b) diffusion zone; c) atomic transitions 
through interphase boundary (after [ii]); 
d) readjustment of one crystalline lat- 
tice to another. 

of transformation of one crystalline lattice into another was noted in [2, ii]. The size 
of the readjustment region h ~ lOa, where a is the interatomic distance (Fig, id). 

To construct the model we will use an approach close to the description of growth of 
a binary crystal from a melt [12]. We divide the boundary region of the diffusion zone into 
layers of thickness h with planes perpendicular to the axis Ox (Fig. id). Each layer is 
characterized by volume fractions of the phases yl k and y2 k (yl k + y2 k = i) and concentra- 
tions of element A ci k, c2 k, where k is the layer number. In the one-dimensional approxi- 
mation cik and c2 k depend only on time. Change in phase composition in layer k is caused 
by both volume diffusion and by atomic redistribution and crystalline lattice readjustment 
in the contacting portions of phases 1 and 2 belonging to adjacent layers. Motion of the 
interphase boundary is equivalent to change in the volume fractions of the phases as a re- 
sult of crystalline lattice readjustment. Within the framework of the model considered the 
equations for the time change in characteristics of layer k can be written in the following 
form: 

all~ (y~+~ k k ~-~" u = - - y ~ ) u ~ - - ( y ~ - - y ~  ) ~, (i) 
Ot 

Oyl  cl  1 , k - - l , k - - 1  h h 
ot - ,~c~ - ( v ~  -y~- ' )u~c~]  + (y~ - v ~ - ' ) ( c ~ - ' ~ , ~ -  c ~ ) ,  (2) 

~kk 

where J i  k, J i  k+l a r e  t he  d e n s i t i e s  o f  t he  d i f f u s i o n  f l u x e s  s u p p l i e d  t o  l a y e r s  k and (k + 1) 
in  phase i ;  wij  i s  t he  f r e q u e n c y  o f  t r a n s i t i o n  o f  atoms A from phase i i n t o  phase  j ( i  ~ j )  
on the  boundary,  i ,  j = 1, 2, u i j  i s  t he  f r e q u e n c y  ( p r o b a b i l i t y )  of  r e a d j u s t m e n t  o f  t h e  c r y s -  
t a l l i n e  l a t t i c e  of  phase i i n t o  phase j ,  i ~ j .  Equa t ion  (1)  d e s c r i b e s  t he  change in  volume 
f r a c t i o n  o f  phase 1 as a r e s u l t  of  c r y s t a l l i n e  l a t t i c e  r e a d j u s t m e n t  o f  the  second phase  i n t o  
the first (the first term on the right) and the the converse (second term). Equations (2), 
(3) define the change in concentration of an element due to diffusion (first term on 
the right), crystalline lattice readjustment (second term), and transition of atoms 
through the interphase boundary (third term). We will now transform from discrete 
to continuous variables in Eqs. (1)-(3). To do this we relate the values yj, 
Cr Jr in the layers (k - I) and (k + i) with the values in layer k, using expansions of the 
f~ Yi k m Yi, Yi k+1 = Yi k • hdYi/ax, etc. Dropping terms of second order smallness, we ob- 
tain 
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~ + (p~- -  p.~l) o~  _ 0, (4) 
Ot Ox 

OylC 1 --__ 1 Oy~J~ - -  ( 5 )  
Ot - - - n ~  Ox -+-[c~(p~I-~ S~I)--Cl(Pl~ -~- sl~)] Oyl 

Ox ' 

Oy~___C~__ = 1 OJ]~J~ + [c~(p~l+S~l )__c~(Pl  ~ + s12) ] OY..__!~ ' ( 6 )  
Ot n o Ox Ox 

where sij = hwij is the rate of transition of atoms A from phase i into phase j, i ~ j, i, 
j = i, 21 while-Pij = huij is the rate of readjustment of the crystalline lattice of phase i 
into phase j on the boundary. In Eq. (4) the change in volume fraction of phase 1 is pro- 
portional not to the quantity Yi to some power, as is usually assumed in chemical kinetics of 
heterophase reactions, but to the spatial gradient 8yl/Sx. This is true because the phase 
conversion is localized on the phase boundary. The second terms on the right sides of Eqs. 
(5) and (6) define the concentration changes due to two processes on the interphase boundary. 
We note that the model of Eqs. (4)-(6) can also be obtained directly from consideration of 
elementary processes without dividing the border region into discrete layers. 

The probability of transition of atoms A from phase i into phase j (i ~ j, i, j = i, 2) 
depends on the energy barrier Eij: wij ~ w i exp (-Eij/RT) , where w i is the frequency of oscil- 
lation of atoms A in phase i on the interphase boundary. Then wl2/w21 ~ (wl/w2) exp [-E12 - 
E21)/RT]. The difference in the activation energies for forward (from phase 1 into phase 2) 
and reverse transitions is the difference between the chemical potentials of element A E12 - 
E21 = ~A(1)[cl] -- ~A(2)[c2]. If the phase compositions correspond to equilibrium values at 

0 10 (Fig. la), a macroscopic flow of atoms A through a given temperature c I = c12 , c 2 = c 2 
the boundary is absent, Js = c2s21 - clsl2, whence s12/s21 = c21~ ~ In our further treat- 
ment we will consider the quantities s12 , s21 to be independent of concentration, which is 
permissible for small deviations from equilibrium. The probability of crystalline lattice 
readjustment of phase i into phase j (i ~ j, i, j = i, 2) is related to the energy barrier 
Uij" uij ~ u i exp (-Ui-/RT) , where u i is the frequency of heterophase fluctuations in phase 

" 3 
i. The ratio of the rates of forward (i § 2) and reverse (2 + i) phase conversions u12/u21 ~ 
(ul/u 2) exp [-(U12 - U21)/RT] is determined by the change in the Gibbs potential AGI§ 2 = UI= - 
U2x. Crystalline lattice readjustment occurs when the phase composition deviates beyond the 
limits of the homogeneity region in the diagram of state (Fig. la). Therefore, the rates 
P12, P21 which figures in the macrokinetic model of Eqs. (4)-(6) can be related to the devi- 
ation of the phase composition from equilibrium values by the simple expressions 

I (~R [C O C ~m~t 0 

-- 12 P~I (7) 
Pl~ = M12(Cl c o )m,= for c,>c72 =~Lw21t 21- -  2) for c2<c21, 

0 [0 for C1~-~C12; [0 for C ~ C ~ I ,  

where Mij and mij are constants, i, j = i, 2. 

Limiting Cases. We will consider a planar interphase boundary, in which case Yx is a 
unit step function Yl = l[x - F(t)], i.e., Yl = 0 for x < F, Yl = 1 for x > F, where F(t) 
is the coordinate of the boundary. Its derivatives can be expressed in terms of a 6-func- 
tion 8yl/Sx = 611 - r(t)], 8yl/St = -611 - r(t)] • dF/dt, where dF/dt is the rate of motion 
of the boundary. The concentration of element A on the boundary changes discontinuously from 
c2 F to ciF. In the volume of phases 1 and 2 8yl/Sx = 0 and Eqs. (5), (6) reduce to the usual 
diffusion equation 

Oci/Ot = -- (l./n~) OJJOx, i = 1, 2. ( 8 )  

I n t e g r a t i n g  Eqs .  ( 5 )  and  ( 6 )  f r o m  x = r - 0 t o  x = r + 0 ,  we o b t a i n  

(1/n~) S 1 [r+o = c~ dF/dt  + (c~ P2, - -  c~ P12) + (c~ s21 - -  c~ s,2 ), ( 9 )  

(1/n~) S2Jr_0 = c~ dV/dt  -+- (c~ pz, - -  c~ p,~) + (c~ s2~ - -  c~ %~). (10) 

T h e s e  r e l a t i o n s h i p s  a r e  w r i t t e n  i n  a c o o r d i n a t e  s y s t e m  f i x e d  t o  t h e  mov ing  p h a s e  b o u n d a r y .  
S u b t r a c t i n g  Eq. ( 9 )  f r o m  Eq. ( 1 0 ) ,  we a r r i v e  a t  t h e  mass  b a l a n c e  

(1/n~) d21r-0 - -  (l/n~) gl/r+ 0 = (c~ - -  c~ ) dr /d t .  ( 1 1 )  

When d i f f u s i o n  mass  t r a n s p o r t  i s  t h e  l i m i t i n g  s t a g e  o f  t h e  p r o c e s s ,  e q u i l i b r i u m  c o n c e n t r a -  
=C 0 0 tions ci F 12 , c2 r = c2~ are established on the interphase boundary, since any deviations 
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0 of cIF�9 c2 F from c12 ~ c21 are eliminated due to the high rates of crystalline lattice 
readjustment and atomic transition through the interphase boundary. In this case Eqs. (8), 
(ii) represent a Stefan-type problem which was analyzed in ]3]. 

If the limiting stage is phase transformation s12 , s21 >> P12, P21 then because of the 
high rate of atomic redistribution the flux through the interphase boundary Js = c2Fs2x - 
cIFS12 ~ 0, whence c2F/cl F = s12/s21 = c21~ ~ Upon growth of the intermetallide due to 
solid solution the latter near the boundary is supersaturated by element A: c2F > 0 C21 �9 

ci F > c12 ~ This corresponds to the experimental data of [4] in annealing of diffusion 
pairs in the a-~ system of Cu-AI. From Eqs. (9)�9 (i0), (7) there follow the conditions 

F 0 F )m21 (1/n~)dllr+o=c~dF/dt +c2M2*(c2 i - - c2  --c~ Mn(c~ - ~ ~  ~ '  (12) ~12J ' 

(1/n~) d~lr-o = c~ dY/dt + c~ M2~ (c~ - -  c~ )~" - -  c~ M~, (c~ - -  c72) ~ ' ,  ( 13 )  

written in a coordinate system fixed to the interphase boundary. Equations (12), (13) are 
analogous to those obtained in [8] in a nonmoving coordinate system for growth limited by 
phase transformation. 

In the opposite case, where growth is limited by transition of atoms through the inter- 
phase boundary P12, P21 >> s12, s2x, deviation of the phase compositions beyond the limits 
cx= ~ c21 ~ of their stability ranges is eliminated by phase transformation. Then JD = 
c2P21 -- C l P l 2  ~ O. Under these conditions ci r < c12~149 C2 F > C210�9 which corresponds to 
growth of a y-phase or chromization of a-iron. Using the condition c21~ - cx2~ = O, 
from Eqs. (9), (i0) we obtain the relationships 

(1/n~) J~/r+o = c~ dF/dt + (c~ - -  c$~) s~ - -  (c~ - -  c72 ) %~, ( 1 4 )  

(1/n~) J~[r-o = c~ dF/dt + (c~ - -  C~l ) $21 - -  (c~ - -  c~2 ) s12,  ( 1 5 )  

written in a coordinate system fixed to the interphase boundary. Equations (14), (15) are 
close to those of the model of [6]�9 [7] for growth limited by atomic flow at the boundary. 
If the composition of phase 1 is equal to the solubility limit cl(x) = c12 ~ and the inter- 
metallide 2 corresponds to theformula AB, then for P12, P21 >> sl2, s21 each transition of 
an atom A through the boundary leads to formation of a new elementary cell of phase 2. Such 
a mechanism was considered in [6]. 

Diffusion in the Boundary Region. For oriented growth of phases in the diffusion zone�9 
which is found in a number of systems [i, et al.] an elastic coupling of crystalline lattices 
exists on the interphase boundary. Nonisotropic elastic deformation changes the chemical 
potential of A atoms�9 the gradient in which is the diffusion motive force. During diffusion 
in replacement phases the Kirkendall effect occurs - motion of crystalline lattice planes 
due to the presence of a vacancy flux. Coupling of the lattices affects the rate of Kirken- 
dall motion in the boundary region. We will consider the changes in diffusion of A atoms 
with consideration of these facts for a limiting case - a coherent interphase boundary�9 
as is found, for example, in growth of thin monocrystalline layers of CoSi 2 and NiSi 2 in 
thin-film diffusion pairs CoSi-Si and NiSi-Si [13, et al.]. The velocities of Kirkendall 
motion in each phase vi, i = i, 2, are determined by the difference between the self-diffu- 
sion coefficients of atoms A and B [3, 6]. Difference in the values of v I, v 2 in the bound- 
ary region ~r (Fig. ib) would cause termination of the coherent coupling. Therefore, in 
the given situation motion of crystalline lattice planes near the interphase boundary occurs 
at an identical velocity v I = v 2. The chemical potential of type k particles (A or B atoms 
or vacancies) in the nonisotropically-elastically deformed solid changes as compared to the 
stressed state Dk ~ [14]: 

h P.h = ~ - -  (I/3) 6,,,~ph - -  V ~ . ~ - F R k ,  �9 (16 )  

where Onn are the diagonal components of the stress tensor Omm; ~ is the mean atomic volume; 

Pk =(ON/ON~)~m~N~.t~ is the number of moles of alloy in the volume V; N k is the number of 
moles of particles of type k; 8mn k = (Semn/SNk)omn,Ns is the elastic compliance tensor; emn 

is the deformation tensor; Rk = (SR/SNk)omn,Ns163 is the partial molar work of elastic defor- 

mation; R = jVomndemn is the work involved in elastic deformation of a volume V of the alloy. 
Symbols for summation over the tensor indices are omitted from Eq. (16). In diffusion by a 
vacancy mechanism the number of particles per unit volume does not change; Pk = 0. Defining 
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( 1 6 ~ , , ~ , ~ ) / 2 6  [151, where K the quantities R, Rk, ~mn k with Hook's law ~,~----6m~%~/9K + ~ ,~  3 

is the volume compression coefficient, G is the shear modulus, and 6mn is a Kronecker symbol, 

we obtain: 
~h ~o + Vh [(1/9K) 2 o = %J~.  + (1/46) ( a , . ~ .  - -  o~/31]., . + 

+ V [(I /9K 2) ( ~ . / 2 )  (OK/ONh) q- ( 1 / 4 6 z ) ( ~ a m .  "a~,]3)(OG/ON~)].  

Here V k = (~V/SNk)omn,Ns163 is the partial molar volume. The elasticity constants K, G in 
each phase are practically independent of concentration. Then ~k = D k~ + Vk E, where E = 

2 I 2 (I/gK)~nn/2-~ (I/46)(amn~mn-- annl is the energy of elastic deformation of a unit volume. 
\ 3 . " 0 " "" 

F o r  a s i n g l e  a t o m  i n  p h a s e  i ,  Bk t a )  = gk  ( 1 )  + m k ( Z ) E i ,  i = 1 ,  2 ,  w h e r e  mk ( 1 )  i s  t h e  v o l u m e  
of type k particles. For intermetallides in solid replacement solutions ~k (i) ~ i/ni ~ 
Then 7~k (i) = 7Dk(i)~ -fi/ni ~ where fi = -VEi is the force acting on atoms in the boundary region 
of phase i~ i = i, 2. We assume that the size of the segments of phases 1 and 2 in the di- 
rection perpendicular to the axis Ox in the boundary region 6 F is comparable to the step 
height h (Fig. id). In this case the forces fi change little in the direction perpendicular 
to Ox, and fall off rapidly with removal from the boundary into the depths of the phases 
[16]. For a vertical layer of the boundary region 6 F we write the condition of force equilib- 
rium nl~ + n2~ = 0. The density of the diffusion flux of atoms A in phase i is 
given by 

J~ -- __ nOi(~) - -  noi(i) nOc~v~, - -  , i  AAV(B.~ ' ) - -~  i)) r AsV(B g ) - -~ (O) -~  - ( 1 7 )  

where LAA (i), LAB (i) are kinetic coefficients and the subscript v denotes vacancies. Usual- 

ly 7~v(i) << 7~A(i), 7~B(i), LAB (i) << LAA (i) [3, 6, et al.]. Substituting the expressions 

obtained for the chemical potentials in Eq. (17) and eliminating fi, we obtain 

J~ = - -  nO~DuOcJOx-- n~ i =/= ], i, ] = 1 2, 
' ( 1 8 )  

Du = [c~D~i a t- (1 - -  c~) D2~ - -  ~ * * * c~ (DAi - -  DB~ ) Fu] g~, D~=c~ (Din - -  D~i ) F ug~, 

Fu  Yi (1 c~) (D~i, D* (1 c~)(D~/-- D*/)/FT, = -- ~i)/W, F i ~ = g j  -- , 

117 = g2 [clV,~l + (1 - -  cO D*I ] -4- ~11 [c2D.~2 -~ (1 - -  c2) D*2], i =)e / . 
(19) 

Here DAi *, DBi* are self-diffusion coefficients for elements A and B in phase i, i = i, 2; 
gi = i + 8 inYi/8 in c i is a thermodynamic factor; Yi, activity coefficients in phase i. The 
mutual diffusion coefficients Dzz and D22 characterize the effect of the gradient in concen- 
tration of element A in phases i and 2 on the diffusion flux in the same phase. The non- 
diagonal coefficients Dij relate the concentration gradient in phase j with the flux in the 
phase i, i j, i, j = i, 2. These are caused by the identical rate of Kirkendall motion 
in both phases due to the coherent coupling of the crystalline lattices on the interphase 
boundary. It is evident from Eq. (19) that Dz2, D2z are nonzero only near the boundary. 
Within the volume of phases i and 2 the expressions for Dzl and D22 reduce to Darken's: 

Dii = CiDBi* + (I - ci)DAi*. 

In the case of an incohrent interphase boundary, which is found for significant differ- 
ences in crystalline lattice parameters or high phase thickness [i, et al.] elastic stresses 
are absent. In the boundary region 6F Kirkendall motion within each phase is defined only 
by the difference between the self-diffusion coefficients of atoms A and B and occurs at 
velocities v I and v2, respectively. A similar case was considered in [17] for mutual diffu- 
sion in a multiphase alloy. Then in Eq. (19) Dz2 = D21 = 0 and diffusion fluxes are de- 
scribed by the conventional equation Ji = -ni~ + ni~ and the mutual diffusion 
coefficients DII , D22 are given by Darken's expression. 

Numerical Study. The problem of Eqs. (4)-(6) was solved on a computer using finite 
difference methods. To anneal diffusion pairs, at the boundaries of the computation region 
with dimensions L a condition of the second sort was posed, Ji,2Ix=0,x=L = 0 (absence of 
mass exchange with the external medium), while a condition of the third sort was used for 
saturation J21x=0 = H(c2 s - C2[x=0), where H is the mass transport coefficient, c2 s is the 
concentration of element A which would be established on the surface in equilibrium with 
the external medium. Calculations were performed using the dimensionless quantities z = 
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Fig. 2. Results of numerical modeling of growth of 
solid solution 1 due to intermetallide 2 for D0/L:p0: 
s o = 0.1:6:1 (a, b) and D0/L:p0:s 0 = 0.2:1:6 (c, d); 
a, c) change in volume fraction of phase 2; b, d) 
change in content of element A. For a, b: i) 0; 2) 
0.i; 3) 0.4; 4) 1.0; 5) 2.0; for c, d: 2, 3) various 
DAI* = i, DBz* = 0 5; D 2" = 2, DB2* = i; 4, 6) iden- 

�9 - , _ -  , i  A . . . _ _  , _  
tzcal DAz - DBz - i, DA2 ~ - DB2 - 2; dimensionless 
self-diffusion coefficients for atoms A and B: i) 0; 
2) 0.i; 3, 4) 0.6; 5, 6) 0.8; 7) 2.0. 

x/L, ~ = t/TM, ~ij = sii/s0, Pij = Pi'/P0, Di" = Di'/D0, i = j, where T M is the scale of the J 3 
annealing time (T M i ~); so, P0, Do are characterlstic values of the corresponding parame- 
ters. For diffusion pair annealing the interphase boundary at m = 0 is located in the middle 
of the specimen. Equilibrium c12 ~ = 0.5, c2z ~ = 0.85 and initial cz(z, T = 0) = 0.i, ca(z, 

= 0) = 0.9 concentrations (atomic fractions) were used. Calculation results are shown in 
Figs. 2, 3, where C A = yzcz + y=c 2 is the net content of element A in a section perpendicular 
to the axis Ox. Growth in phase 1 begins when the concentration of element A in phase 2 near 
the boundary becomes less than the equilibrium value c2z ~ (Fig. 2a, b). For similar rates 
of diffusion, atomic transition, and crystalline lattice readjustment D0/L:p0:s 0 = i:i:i 
there is initially an "incubation period," where the interphase boundary does not move. The 
limiting stage is then atomic redistribution on the interphase boundary. Further phase i 
increases at a constant rate which is limited by readjustment of the crystalline lattice of 
phase 2 into phase 1 (Fig. 3). For lengthy annealing c2 F + 0 c2z , the limiting stages becomes 
diffusion and the linear increase law approaches parabolic (Fig. 3, curve i). If diffusion 
is accomplished more slowly than processes on the interphase boundary then the "incubation 
period" disappears and thegrowth in phase 2 is limited by phase transformation (the linear 
portion of curves 2-5, Fig. 3) and then by diffusion (parabolic growth law). The deviation 
of the boundary concentrations cz F, ca r from their equilibrium values cz= ~ c2z ~ depends on 
the ratio between the quantities P0 and s o . For P0 > so it decreases. Calculations with 
identical D-AI* = DBI * = i, DA2 ~ = DB2* = 2 and different DAI* = i, DBz* = 0.5, DA2 * = 2, 
DB2* = 1 self-diffusion coefficients for atoms A and B with the ratio D0/L:p0:s 0 = 0.2:1:6 
show that in the latter case the growth of phase 1 is somewhat retarded due to reduction in 

m ~ - - - - - " ~ C  i i ~ ' i . I , 

o @ o,a ~,-DoT/L ~ 

Fig. 3. Kinetics of interphase bound- 
ary motion for growth in phase i (1-5) 
and phase 2 (6) in diffusion pair anneal- 
ing: i) D0/L:p0:s0 = i:i:i; 2) Do/L: 
p0:s0 = 1:3:6; 3) D0/L:p0:s 0 = 0.1:1:6; 
4) Do/L:p0:s0 = 0.2:3:6; 5) Do/L:p0:s0 = 
0.1:6:1; 6) D0/L:p0:s 0 = 0.2:1:6. 

1296 



the mutual diffusion coefficients (Fig. 2c, d). However, the character of the displacement 
of the interphase boundary with time remains practically unchanged. 

NOTATION 

Ji, diffusion flow of atoms A; ni ~ number of lattice points per unit volume; a , inter- 
atomic distance; Yi, volume fraction of phase; ci, concentration of element A; t, [, dimen- 
sional and dimensionless time; x, z, dimensional and dimensionless coordinate; TM, character- 
istic time interval; L, characteristic diffusion zone length; 6F, size of boundary region; 
Pij, rate of phase i crystalline lattice readjustment into phase j; sij, rate of transition 
of A atoms from phase i into phase j; F, coordinate of planar phase boundary; vi, Kirkendall 
velocity; Dk, chemical potential of particle k; G, shear modulus; emn, Omn , stress and defor- 
mation tensors; E, elastic deformation energy per unit volume; DAi*, DBi*, self-diffusion 
coefficients for atoms A and B in phase i; Yi, thermodynamic activity coefficient. Sub- 
scripts, phase numbers. 
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